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Abstract. Constrained Laplacian Score (CLS) is a recently proposed
method for semi-supervised feature selection. It presented an outper-
forming performance comparing to other methods in the state of the art.
This is because CLS exploits both unsupervised and supervised parts
of data for selecting the most relevant features. However, the choice of
the little supervision information (represented by pairwise constraints)
is still a critical issue. In fact, constraints are proven to have some noise
which may deteriorate the learning performance. In this paper we try to
override any negative effects of constraints set by the variation of their
sources. This is done by an ensemble technique using both a resampling
of data (bagging) and a random subspace strategy. The proposed ap-
proach generates a global ranking of features by aggregating multiple
Constraint Laplacian Scores on different views of the available labeled
and unlabeled data . We validate our approach by empirical experiments
over high-dimensional datasets and compare it with other representative
methods.

Key words: Feature selection, semi-supervised learning, constraint score,
ensemble methods.

1 Introduction

In nowadays machine learning applications, data acquisition tools have well de-
veloped making it’s easier to get continuously a voluminous rough data. The
huge quantity of data in its turn, has a dramatically deterioration effects on
both stocking and treating the data via the classical learning algorithm due to
the “curse of dimensionality”. In order to override this problem, feature selection
has become one of the most important techniques to reduce the dimensionality.
Feature selection can be defined as the process of choosing the most relevant
features of data. The relevance of a feature may differ according to the learning
context, which may be roughly divided into supervised, unsupervised and semi
supervised feature selection.



In supervised feature selection, where all data instances are labeled, a rele-
vance of a feature is measured according to its correlation with label information.
Then a ’good’ feature would be the one at which the instances with the same
labels record the same (or closer) values, and vice-versa [16]. Unsupervised fea-
ture selection is considered as a much harder problem due to the absence of
labels; hence the relevance of a feature is measured according to its ability in
preserving some data characteristics (e.g. variance) [11]. Actually, the supervised
feature selection methods outperform the unsupervised ones due to the presence
of labels which represent the background knowledge about the data. However,
labels availability is not always guaranteed, this is because labels -generally- re-
quire experts’ intervention which is costly to obtain. Adding the aforementioned
idea of rapid data acquisition tools development, a more frequent case in ma-
chine learning applications is to provide labeling information for a small part of
data, then the data is called ‘semi-supervised’, which in its turn produces the
so-called “small-labeled sample problem” [34].

In [3] we proposed Constrained Laplacian Score (CLS) as a semi-supervised
scoring method which makes profit of the data structure and the label infor-
mation (transformed into pairwise constraints). CLS has scored an outstanding
performance towards other competitive methods. However, the method was sen-
sible to the noise in the constraints set. To tackle this problem, we later proposed
a Constrained Selection based Feature Selection framework (CSFS) [19] in which
we enhanced the function score in order to be more efficient. In order to overcome
the problem of noisy constraints, CSFS exploits a constraint selection process
according to a coherence measure (proposed in [8]), which considers that two
constraints are incoherent if they represent two contradictive powers and coher-
ent if not. When the constraint selection is done, the remaining constraints are
obviously fewer but more efficient. CSFS outperformed the results of its ances-
tor CLS, this could be explained by the amelioration of the scoring function and
the elimination of the constraint noise. However, CSFS had two critical points
: firstly, even if they are efficient, the size of selected constraint set was rather
small, this has led in some cases to dramatic minimization of the constraints use
feasibility. In addition, CSFS and CLS are based on the Euclidian distance be-
tween instances in the computation of feature scores, in this case the calculation
of such distance becomes less reliable when data is of high dimensionality.

To overcome the two mentioned problems, we present an ensemble-based
framework called EnsCLS (for Ensemble Constraint Laplacian Score) for semi-
supervised feature selection. EnsCLS combines both a resampling of data (bag-
ging) and a random selection of features (random subspaces or RSM for short)
strategy. The CLS score is then used to measure features relevance on each
replicate of data and the score average of all features across all ensemble com-
ponents is considered. A combination of these two main strategies (bagging and
RSM) for producing feature ranking, leads to an exploration of distinct views of
inter-pattern relationships and allows to (i) compute robust estimates of vari-
able importance against small changes in the pairwise constraint set, and (ii) to
mitigate the curse of dimensionality.



The rest of the paper is organized as follows: Section 2 reviews recent studies
on semi-supervised feature selection and ensemble methods. Section 3 briefly
recalls Constraint Laplacian Score algorithm. Then we discuss the details of
the proposed EnsCLS algorithm in Section 4. Experiments using relevant high-
dimensional benchmarks and real datasets are presented in Section 5. Finally,
we conclude this paper in Section 6.

2 Related works

In this section, we briefly present the semi-supervised feature selection and the
semi-supervised ensemble approaches that appeared recently in the literature.

2.1 Feature selection

With the advent of semi-supervised feature selection, some unsupervised meth-
ods are adopted to this context by ignoring the few label information. Laplacian
score [18], as example, determines a feature relevance according to the variance of
data along it. The variance is an important measure of data, nevertheless, labeled
data also carry valuable information and represent the background knowledge
about the domain. At the other hand, another score, called constraint score [33],
depends only on the few available labeling information which is transformed
into constraints. Actually, constraint score proved that utilizing a few number
of constraints it may perform competitively to other full labels methods (like
Fisher score [13]), this had made constraint score more adaptive to the small-
labeled sample problem. However, constraint score ignores the “large” unlabeled
data part which carry the real data structure. In addition, the performance of
constraint score is severely influenced by the choice of the constraint set. To
overcome this problem, authors in [30] proposed a bagging approach (BS) to the
constraint score in order to ameliorate the overall classification accuracy. The
main drawback of the method is -as mentioned- the still ignorance of the unla-
beled part of data which is generally far larger than the labeled one. In order
to make profit of the both labeled and unlabeled parts of data, a score called
C4 [23] has proposed a simple multiplication of the Laplacian and Constraint
scores in order to compromise between the two scores. However, the method is
biased towards the features with good Laplacian score but bad constraint score
and vice-versa.

2.2 Ensemble learning

Ensemble methods have been called the most influential development in Data
Mining and Machine Learning in the last decade. They combine multiple models
into one usually more accurate than the best of its components. This improve-
ment of performances relies on the concept of diversity which states that a good
classifier ensemble is an ensemble in which the examples that are misclassified
are different from one individual classifier to another. Dietterich [10] states that



”A necessary and sufficient condition for an ensemble of classifiers to be more
accurate than any of its individual members is if the classifiers are accurate and
diverse”. Many methods have been proposed to generate accurate, yet diverse,
sets of models. Bagging [5], boosting [14] and Random Subspaces [20] are the
most popular examples of this methodology. While Bagging obtains a bootstrap
sample by uniformly sampling with replacement from original training set, boost-
ing resamples or reweighs the training data by emphasizing more on instances
that are misclassified by previous classifiers. Likewise bagging, random subspaces
method (RSM) are another excellent source of obtaining diversity through fea-
ture set manipulation that provides different views of data and allows to improve
the quality of classification solutions.

Recently, besides classification ensemble, there also appears clustering [29, 31]
and semi-supervised learning [26, 32, 17] ensemble for which it has been shown
that combining the strengths of a diverse set of clusterings or semi-supervised
learners can often yield more accurate and robust solutions. Last but not least,
considerable attention was paid to exploiting the power of ensemble with a view
to identify and remove the irrelevant features in a supervised [6, 27], unsupervised
[21, 22, 12] and semi-supervised [2] setting.

3 Constraint Laplacian Score

In this section we present a brief description of the CLS score [3] upon which we
depend in our framework. In fact, CLS utilizes both parts of data, labeled and
unlabeled. The labeled part is transformed into pairwise constraints, which can
be classified on two subsets: ΩML (a set of Must-Link constraints) and ΩCL (a
set of Cannot-Link constraints)

– Must-Link constraint (ML): involving two instances xi and xj , specifies
that they have the same label.

– Cannot-Link constraint (CL): involving two instances xi and xj , specifies
that they have different labels.

Let X be a dataset of n instances characterized by p features. X consists of
two subsets: XL for labeled data and XU for unlabeled data.

Let r be a feature to evaluate. We define its vector by fr = (fr1, ..., frn). The
CLS of r, which should be minimized, is computed by:

CLSr =

∑

i,j(fri − frj)
2Sij

∑

i

∑

j|∃l,(xl,xj)∈ΩCL
(fri − αi

rj)
2Dii

(1)

where D is a diagonal matrix with Dii =
∑

j Sij , and Sij is defined by the
neighborhood relationship between instances (xi = 1, .., n) as follows:

Sij =

8

>

>

<

>

>

:

e−
‖xi−xj‖

2

λ if ((xi, xj) ∈ XU and xi , xj are

neighbors) or (xi, xj) ∈ ΩML

0 otherwise

(2)



Algorithm 1 CLS

Require:

A data set X(n × p), which consists of two subsets: XL(L × p), the subset
of labeled training instances and XU (U × p), the subset of unlabeled train-
ing instances; the input space (F = {f1, . . . , fp}); the constant λ and the
neighborhood degree k.

1: Construct the constraint sets (ΩML and ΩCL) from the labeled part: XL.
2: Calculate the dissimilarity matrix S and the diagonal matrix D.
3: for r = 1 to p do

4: Calculate CLSr according to eq(1).
5: end for

where λ is a constant to be set, and xi, xj are neighbors means that xi is among
k nearest neighbors of xj .

αi
rj =











frj if (xi, xj) ∈ ΩCL

µr if i = j and xi ∈ XU

fri otherwise

(3)

where µr = 1
n

∑

i fri (the mean of the feature vector fr).
CLS represents an enhanced version of both scores Laplacian [18] and Constraint-

based [33]. In fact, Laplacian score can be seen as a special version of CLS when
there are no labels (X = XU ), and when (X = XL), CLS can be considered as
an adjusted version of constraint score [33]. In CLS, we proposed a more efficient
combination of both scores by a new score function, including the geometrical
structure of unlabeled data and the constraint-preserving ability of labeled data.

With CLS, on the one hand, a relevant feature should be the one on which
those two instances (neighbors or related by an ML constraint) are close to each
other. On the other hand, the relevant feature should be the one with a larger
variance or on which those two instances (related by a CL constraint) are well
separated. We present the whole procedure of CLS in Algorithm 1.

Note that this algorithm is computed in time O(p × max(n2, log p)). To
reduce this complexity, we proposed in our prior work [3] to apply a clustering
on XU . The idea was to substitute this huge part of data by a smaller one
X ′

U = (u1, ..., uK) by preserving the geometric structure of XU , where K is the
number of clusters. We proposed to use the Self-Organizing Map (SOM) based
clustering [24], for its ability to preserve the topological relationship of data well
and thus the geometric structure of their distribution. With this strategy, we
reduced the complexity to O(p × max(U, log p)), where U is the size of XU .

4 Ensemble Constraint Laplacian Score

In this section we present our ensemble based approach of constrained laplacian
score for semi-supervised feature selection.



As discussed before, the most important condition for a successful ensem-
ble learning method is to combine models which are different from each other.
Thus, to maintain diversity between committee members, we have employed two
strategies. Firstly, a well known ensemble method named RSM [20], is employed
to face the curse of dimensionality problem by constructing multiple classifiers
each one trained on different subset of examples projected on a smaller fea-
ture set RSM i. Secondly, the diversity is further maintained, by applying the
bootstrapping method [14].

The formal description of our approach is given in Algorithm 2. Given a
set of labeled training examples XL, and a set of unlabeled training examples
XU , described over the input space F = {f1, . . . , fp}, our approach constructs
a committee according to the following steps. First, as described in the steps
3 and 4 of Algorithm 2, the committee is constructed as follows : For each
ensemble component i, a replication XL,b

i of the labeled data set is obtained
by selecting instances from XL with replacement and then projecting them over
RSM i, a feature subspace with m randomly selected features (m < p). The
unlabeled data part XU is also projected over RSM i to generate XU

i. Once
each ensemble component i is obtained, the CLS score in Algorithm 1 is used to
measure features relevance (step 6). A ranking of all features is finally obtained
with respect to their average relevances over all ensemble members (steps from
7 to 9).

A single learner is known to produce very bad results as the learning algo-
rithms break down with high-dimensional data. Ensemble learning paradigms
train multiple component learners and then combine their output results. En-
semble techniques are considered as an effective solution to overcome the dimen-
sionality problem and to improve the robustness and the generalization ability
of single learners,

By using bagging in tandem with random feature subspaces, our framework
try to deal with three different problems in the CLS score:

– High dimensionality : The major drawback of CLS was the application
on high-dimensional data. This is because the Euclidian distances between
examples (over all features) is an essential factor in the function score (Sij

in equation (1)). This makes the calculation of such distances less reliable
when dealing with very high-dimensional data leading to bad features scores.
Motivated by this, we adopt the use of the random manipulation strategy
over the feature space (RSM). Hence, we create N random subspaces of the
original features with a nearly equal apparition probability for all features.
The high dimension is then reduced in each subspace and the distances
calculated upon the new reduced dimension is more reliable. Consequently,
working on the projected random subspace allows us to mitigate the curse
of dimensionality and also help in enhancing the diversity between ensemble
components.

– Constraints : In CLS, instance level constraints are generated directly from
labels. In semi-supervised context such labels are few, then the number of
constraints (Ω = L(L − 1)/2 where L is the number of the labeled instances)



is rather few too. Moreover, the generated constraint set may contain some
noisy constraints which were proven to have deteriorate effects on the learn-
ing performance. In order to improve the positive effects of the pairwise
constraints, we propose the use of bagging method on the labeled part of
data in each random subspace. The bagging is made by sampling with re-
placement. The reason for using bagging is to enforce diversity on pairwise
constraints and then to compute a robust estimation of feature score against
small changes in the pairwise constraint set. Furthermore, the different boot-
strap samples in different random subspaces helps in reducing the undesirable
effects of the noisy constraints.

– Unlabeled instance diversity : The computation of CLS score implied
the application of a clustering algorithm (SOM) to overcome the compu-
tation complexity of the score function. This is due to the fact that the
complexity of the CLS score is highly dependent to the unlabeled part of
data. Such a clustering was proved to considerably reduce this complexity.
In this work, based on the random subspace approach, we keep the use of
SOM algorithm in each subspace. Doing this, not only the computational
complexity is reduced, but also the diversity is gained by the diversity of
clusterings obtained in the different subspaces.

Algorithm 2 The EnsCLS algorithm

Require:

Set of labeled training examples (XL); set of unlabeled training examples
(XU ); input space (F = {f1, . . . , fp}); committee size (N)

1: Initialize the scores I(fr) to zero for each feature r
2: for i = 1 : N do

3: RSM i = randomly draw m features from F
4: XL,b

i = bootstrap sample from XL projected onto RSM i

5: XU
i = the unlabeled sample XU projected onto RSM i

6: impi = CLS(XL,b
i, XU

i) compute the constraint laplacian score of each
feature in RSM i using Algorithm 1

7: for each feature r ∈ RSM i do

8: I(fr) = I(fr) + impi(fr)
N

9: end for

10: end for

11: rank the features in F according to their scores I in ascending order.
12: return F

5 Experimental results

In this section, we provide empirical results on several benchmark and real high-
dimensional datasets and compare EnsCLS against over state-of-the-art semi-



Table 1. The datasets used in the experiments

Dataset # patterns # features # classes Reference

BasesHock 1993 4862 2 [36]
Leukemia 73 7129 2 [15]
Lymphoma 96 4026 9 [1]
Madelon 2598 500 2 [4]
PcMac 1943 3289 2 [36]
PIE10P 210 2420 10 [36]
PIX10P 100 10000 10 [36]
Prostata 102 12533 2 [28]
Relathe 1427 4322 2 [36]

supervised feature ranking algorithms. EnsCLS is compared with four other
feature selection methods: (1) the original CLS score [3], (2) the Constrained
Selection based Feature Selection framework (CSFS) [19], two ensemble-based
feature evaluation algorithms, including (3) the Bagging constraint Score (BS)
[30], and (3) the wrapper-type Semi-Supervised Feature Importance approach
(SSFI) [2]. Nine benchmark and real labeled datasets were used to assess the
performance of feature selection algorithms. They are described in Table 1. We
selected these datasets as they contain thousands features and are thus good
candidates for feature selection. Most of these datasets have already been used in
various empirical studies [35, 2] and cover different application domains: Biology,
image and text analysis.

5.1 Evaluation framework

To make fair comparisons, the same experimental settings in [3] was adopted here
for CLS and CSFS approaches, i.e., the neighborhood graph with a neighborhood
degree of 10, and the λ value is set to 0.1. For BS, we set the ensemble size to
100, as around this value the quality of this method is less insensitive to the
increase of the ensemble size (c.f. [30]). EnsCLS and SSFI are tuned similarly.
The number of features per bag is m =

√
p, where p is the size of the input

space. The committee size N is computed using the following formula:

N = 10 × ceil

(

log(0.01)

log(1 − 1/
√

p)

)

. (4)

This formula ensures that each feature is drawn ten times at a confidence level
of 0.01. Furthermore, as suggested by the authors in [2], the number of iterations
maxiter and the sample size n in SSFI are set to 10, and 1, respectively.

For each dataset, experimental results are averaged over 10 runs. At each run,
the whole dataset is splitted (in a stratified way) into a training partition with
2/3 of the observations and a test partition with the remaining 1/3 observations.
Training set is further splitted into labeled and unlabeled datasets. As in [35],



Algorithm 3 Feature Evaluation Framework

1: for each dataset X do

2: build a randomly stratified partition (Tr, T e), from X where |Tr| = 2
3 .|X |

and |Te| = 1
3 .|X |;

3: Generate labeled data XL by randomly sampling from Tr 3 instances per
class;

4: XU = Tr\XL;
5: SFCLS = Apply CLS with XL ∪ XU ;
6: SFCSFS = Apply CSFS with XL ∪ XU ;
7: SFBS = Apply BS with XL ∪ XU ;
8: SFSSFI = Apply SSFI with XL ∪ XU ;
9: SFEnsCLS = Apply EnsCLS with XL ∪ XU ;

10: for i = 1 to 20 do

11: Select top i features from SFCLS, SFCSFS , SFBS , SFSSFI and
SFEnsCLS ;

12: TrCLS = ΠSFCLS
(Tr);

13: TrCSFS = ΠSFCSF S
(Tr);

14: TrBS = ΠSFBS
(Tr);

15: TrSSFI = ΠSFSSF I
(Tr);

16: TrEnsCLS = ΠSFEnsCLS
(Tr);

17: Train the Baselearner using TrCLS, TrCSFS, TrBS , TrSSFI and
TrEnsCLS and record accuracy obtained on Te;

18: end for

19: end for

the labeled sample set XL consists of randomly selected 3 patterns per class,
and the remaining patterns are used as unlabeled sample set XU . In order to
assess the quality of a feature subset obtained with the aforementioned semi-
supervised procedures, we train a SVM classifier (using LIBSVM package [7])
on the whole labeled training data and evaluate its accuracy on the test data. The
latter is taken as the score for the feature subset. The details of the evaluation
framework are shown in Algorithm 3. As mentioned above, the process specified
in Algorithm 3 is repeated 10 times. The obtained accuracy is averaged and
used for evaluating the quality of the feature subset selected according to each
algorithm.

5.2 Results

In Figure 1, we plotted the accuracies of the above feature selection approaches
against the 20 most important features. As may be observed, EnsCLS outper-
forms the other four methods by a noticeable margin. The major observations
from the analysis of these plots are three-fold:

– EnsCLS usually has better performances than CLS and CSFS. This firstly
validates the motivation behind our method EnsCLS that ensemble strategy
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Fig. 1. Accuracy vs. different numbers of selected features. The number of la-
beled instances per class is set to 3.

has the potential to improve the quality and the stability of the CLS score
and also confirms the effectiveness of this ensemble strategy to rank the
features properly, compared to the powerful constraint selection method used
in CSFS.

– EnsCLS seems to combine more efficiently the labeled and unlabeled data
for feature evaluation and it shows promise for scaling to larger domains in a
semi-supervised way in view of the good performance on BaseHock, PcMac,
Madelon and Relathe datasets. This suggests the ability of the proposed



Table 2. Mean and standard deviations of accuracy over the 20 most important
features. Bottom row of the table present average rank of accuracy mean used
in the computation of the Friedman test.

Data EnsCLS CLS CSFS BS SSFI

BaseHock 0.695±0.01 0.507±0.00 0.513±0.01 0.600±0.05 0.675±0.03
Leukemia 0.781±0.06 0.740±0.10 0.751±0.11 0.618±0.04 0.760±0.08
Lymphoma 0.702±0.03 0.480±0.03 0.490±0.03 0.647±0.04 0.680±0.06
Madelon 0.594±0.01 0.542±0.04 0.549±0.03 0.499±0.01 0.548±0.04
PcMac 0.703±0.01 0.515±0.01 0.517±0.01 0.543±0.03 0.638±0.02
PIE10P 0.734±0.07 0.535±0.04 0.535±0.04 0.696±0.11 0.701±0.07
PIX10P 0.907±0.03 0.837±0.05 0.837±0.05 0.882±0.03 0.902±0.03
Prostata 0.749±0.04 0.507±0.02 0.511±0.02 0.538±0.08 0.735±0.10
Relathe 0.660±0.01 0.550±0.00 0.560±0.00 0.562±0.02 0.553±0.00
Av Rank 1.0000 4.6667 3.6667 3.3333 2.3333

ensemble method of CLS to rank the relevant features accurately, compared
to especially the other ensemble semi-supervised feature selection approaches
(BS and SSFI), by exploiting efficiently the topological information from the
unlabeled data.

– A closer inspection of the plots reveals that the accuracy on the features
selected by EnsCLS generally increases swiftly at the beginning (the number
of selected feature is small) and slows down afterwards. This suggests that
EnsCLS ranks the most relevant features first and that a classifier can achieve
a very good classification accuracy with the top 5 features while the other
methods require more features to achieve comparable results.

Fore sake of completeness, we also averaged the accuracy for different num-
bers of selected features. The averaged accuracies of EnsCLS and the other meth-
ods over the top 20 features are depicted in Table 2. In order to better assess
the results obtained for each algorithm, we adopt in this study the methodology
proposed by [9] for the comparison of several algorithms over multiple datasets.
In this methodology, the non-parametric Friedman test is firstly used to evaluate
the rejection of the hypothesis that all the classifiers perform equally well for
a given risk level. It ranks the algorithms for each dataset separately, the best
performing algorithm getting the rank of 1, the second best rank 2 etc. In case
of ties it assigns average ranks. Then, the Friedman test compares the average
ranks of the algorithms and calculates the Friedman statistic. If a statistically
significant difference in the performance is detected, we proceed with a post hoc

test. The Nemenyi test is used to compare all the classifiers to each other. In
this procedure, the performance of two classifiers is significantly different if their
average ranks differ more than some critical distance (CD). The critical distance
depends on the number of algorithms, the number of data sets and the critical
value (for a given significance level p) that is based on the Studentized range
statistic (see [9] for further details). In this study, based on the values in Table 2,



the Friedman test reveals statistically significant differences (p < 0.05) between
all compared approaches.

Furthermore, we present the result from the Nemenyi posthoc test with av-
erage rank diagrams as suggested by Demsar [9]. These are given on Figure 2.
The ranks are depicted on the axis, in such a manner that the best ranking
algorithms are at the rightmost side of the diagram. The algorithms that do not
differ significantly (at p = 0.1) are connected with a line. The critical difference
CD is shown above the graph (here CD=1.8336).

CD =1.8336

5 4 3 2 1

EnsCLS

SSFI

BS

CSFS

CLS

Fig. 2. Average ranks diagram comparing the feature selection algorithms in
terms of accuracy over different number of selected features.

Overall, EnsCLS performs best. However, its performances are not statisti-
cally distinguishable from the performances of SSFI. Another interesting obser-
vation upon looking at the average rank diagrams and Table 2 is that, almost in
all cases the ensemble methods, i.e. EnsCLS, SSFI and BS, achieve better per-
formances than those of single methods including CLS and CSFS, respectively.

The statistical tests we use are conservative and the differences in perfor-
mance for methods within the first group (EnsCLS and SSFI) are not significant.
To further support these rank comparisons, we compared, on each dataset and
for each pair of methods, the accuracy values in Table 2 using the paired t-test
(with p = 0.1). The results of these pairwise comparisons are depicted in Table
3 in terms of ”Win-Tie-Loss” statuses of all pairs of methods; the three values
in each cell (i, j) respectively indicate how times many the approach i is signifi-
cantly better/not significantly different/significantly worse than the approach j.
Following [9], if the two algorithms are, as assumed under the null-hypothesis,
equivalent, each should win on approximately n/2 out of n data sets. The num-
ber of wins is distributed according to the binomial distribution and the critical
number of wins at p = 0.1 is equal to 7 in our case. Since tied matches support
the null-hypothesis we should not discount them but split them evenly between
the two classifiers when counting the number of wins; if there is an odd number
of them, we again ignore one.

In Table 3, each pairwise comparison entry (i, j) for which the approach i
is significantly better than j is boldfaced. From this table, the analogous trend
between EnsCLS and other feature selection methods can be observed as in Table



Table 3. Pairwise t-test comparisons of FS methods in terms of accuracy. Bold
cells (i, j) highlights that the approach i is significantly better than j according
to the sign test at p = 0.1.

EnsCLS CLS CSFS BS SSFI

EnsCLS − 8/1/0 8/1/0 8/1/0 5/4/0
CLS 0/1/8 − 2/3/4 2/2/5 0/3/6
CSFS 0/1/8 4/3/2 − 2/2/5 1/2/6
BS 0/1/8 5/2/2 5/2/2 − 0/2/7
SSFI 0/4/5 6/3/0 6/2/1 7/2/0 −

2 and Figure 2, i.e., EnsCLS and SSFI usually have better performances than
all other methods. On the other hand, It can be seen from Table 3 that EnsCLS
significantly outperforms SSFI.

6 Conclusion

Constraint Laplacian Score (CLS) which uses pairwise constraints for feature
selection has shown good performance in our previous work [3]. However, one
important problem of such approach is how to best use the available constraints
for dealing with low-quality ones that may deteriorate the learning performance.
Instead of making efforts on choosing constraints for single feature selection, as
recently done in the CSFS approach [19], we address, in this paper, this impor-
tant issue from another view. We propose a novel semi-supervised feature selec-
tion method called Ensemble Laplacian Constraint Score (EnsCLS for short),
which firstly combines both data resampling (bagging) and random subspace
strategies for generating different views of the data. Once each ensemble compo-
nent is obtained, the CLS score is used to measure features relevance. A ranking
of all features is finally obtained with respect to their average relevances over all
ensemble members.

Extensive experiments on a series of benchmark and real datasets have ver-
ified the effectiveness of our approach compared to other state-of-the-art semi-
supervised feature selection algorithms and confirm the ability of the used en-
semble strategy to rank the relevant features accurately. They also show that the
proposed EnsCLS method can utilize labeled and unlabeled data in a more effec-
tive way than Constraint Laplacian Score. Furthermore, they indicate that our
method which inject some randomness for manipulating the available unlabeled
and labeled data (constraints) is superior to the recently proposed CSFS method
which actively selects constraints to improve the quality of the CLS score.

Future substantiation through more experiments on biological databases con-
taining several thousands of variables and through evaluating the stability of the
feature selection method [25, 27] when small changes are made to the data are
currently being undertaken. Moreover, comparisons using different numbers of
pairwise constraints will be reported in due course.
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